Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1281058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075883

RESUMO

Metal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV). Nevertheless, few reports have described the direct, or ROS-independent, effects of some of these soft-metal(loid)s on bacteria, including the dismantling of iron-sulfur clusters [4Fe-4S] and the accumulation of porphyrin IX. Here, we used genome-wide genetic, proteomic, and biochemical approaches under anaerobic conditions to evaluate the direct mechanisms of toxicity of these metal(loid)s in Escherichia coli. We found that certain soft-metal(loid)s promote protein aggregation in a ROS-independent manner. This aggregation occurs during translation in the presence of Ag(I), Au(III), Hg(II), or Te(IV) and post-translationally in cells exposed to Cd(II) or As(III). We determined that aggregated proteins were involved in several essential biological processes that could lead to cell death. For instance, several enzymes involved in amino acid biosynthesis were aggregated after soft-metal(loid) exposure, disrupting intracellular amino acid concentration. We also propose a possible mechanism to explain how soft-metal(loid)s act as proteotoxic agents.

2.
Free Radic Biol Med ; 204: 118-127, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119864

RESUMO

6-phosphogluconolactonase (6PGL) catalyzes the second reaction of the pentose phosphate pathway (PPP) converting 6-phosphogluconolactone to 6-phosphogluconate. The PPP is critical to the generation of NADPH and metabolic intermediates, but some of its components are susceptible to oxidative inactivation. Previous studies have characterized damage to the first (glucose-6-phosphate dehydrogenase) and third (6-phosphogluconate dehydrogenase) enzymes of the pathway, but no data are available for 6PGL. This knowledge gap is addressed here. Oxidation of Escherichia coli 6PGL by peroxyl radicals (ROO•, from AAPH (2,2'-azobis(2-methylpropionamidine) dihydrochloride) was examined using SDS-PAGE, amino acid consumption, liquid chromatography with mass detection (LC-MS), protein carbonyl formation and computational methods. NADPH generation was assessed using mixtures all three enzymes of the oxidative phase of the PPP. Incubation of 6PGL with 10 or 100 mM AAPH resulted in protein aggregation mostly due to reducible (disulfide) bonds. High fluxes of ROO• induced consumption of Cys, Met and Trp, with the Cys oxidation rationalizing the aggregate formation. Low levels of carbonyls were detected, while LC-MS analyses provided evidence for oxidation of selected Trp and Met residues (Met1, Trp18, Met41, Trp203, Met220 and Met221). ROO• elicited little loss of enzymatic activity of monomeric 6PGL, but the aggregates showed diminished NADPH generation. This is consistent with in silico analyses that indicate that the modified Trp and Met are far from the 6-phosphogluconolactone binding site and the catalytic dyad (His130 and Arg179). Together these data indicate that monomeric 6PGL is a robust enzyme towards oxidative inactivation by ROO• and when compared to other PPP enzymes.


Assuntos
Aminoácidos , Escherichia coli , Aminoácidos/química , Escherichia coli/genética , NADP , Oxirredução
3.
Sci Rep ; 12(1): 21191, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476946

RESUMO

Escherichia coli glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) are key enzymes of the pentose phosphate pathway, responsible for the NADPH production in cells. We investigated modification of both enzymes mediated by peroxyl radicals (ROO·) to determine their respective susceptibilities to and mechanisms of oxidation. G6PDH and 6PGDH were incubated with AAPH (2,2'-azobis(2-methylpropionamidine)dihydrochloride), which was employed as ROO· source. The enzymatic activities of both enzymes were determined by NADPH release, with oxidative modifications examined by electrophoresis and liquid chromatography (LC) with fluorescence and mass (MS) detection. The activity of G6PDH decreased up to 62.0 ± 15.0% after 180 min incubation with 100 mM AAPH, whilst almost total inactivation of 6PGDH was determined under the same conditions. Although both proteins contain abundant Tyr (particularly 6PGDH), these residues were minimally affected by ROO·, with Trp and Met being major targets. LC-MS and in silico analysis showed that the modification sites of G6PDH are distant to the active site, consistent with a dispersed distribution of modifications, and inactivation resulting from oxidation of multiple Trp and Met residues. In contrast, the sites of oxidation detected on 6PGDH are located close to its catalytic site indicating a more localized oxidation, and a consequent high susceptibility to ROO·-mediated inactivation.


Assuntos
Via de Pentose Fosfato , Fosfogluconato Desidrogenase , Glucosefosfato Desidrogenase , NADP , Fosfatos , Glucose
4.
PLoS One ; 17(10): e0273392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36206251

RESUMO

Herein we report the use of an environmental multimetal(loid)-resistant strain, MF05, to biosynthesize single- or multi-element nanostructures under anaerobic conditions. Inorganic nanostructure synthesis typically requires methodologies and conditions that are harsh and environmentally hazardous. Thus, green/eco-friendly procedures are desirable, where the use of microorganisms and their extracts as bionanofactories is a reliable strategy. First, MF05 was entirely sequenced and identified as an Escherichia coli-related strain with some genetic differences from the traditional BW25113. Secondly, we compared the CdS nanostructure biosynthesis by whole-cell in a design defined minimal culture medium containing sulfite as the only sulfur source to obtain sulfide reduction from a low-cost chalcogen reactant. Under anaerobic conditions, this process was greatly favored, and irregular CdS (ex. 370 nm; em. 520-530 nm) was obtained. When other chalcogenites were tested (selenite and tellurite), only spherical Se0 and elongated Te0 nanostructures were observed by TEM and analyzed by SEM-EDX. In addition, enzymatic-mediated chalcogenite (sulfite, selenite, and tellurite) reduction was assessed by using MF05 crude extracts in anaerobiosis; similar results for nanostructures were obtained; however Se0 and Te0 formation were more regular in shape and cleaner (with less background). Finally, the in vitro nanostructure biosynthesis was assessed with salts of Ag, Au, Cd, and Li alone or in combination with chalcogenites. Several single or binary nanostructures were detected. Our results showed that MF05 is a versatile anaerobic bionanofactory for different types of inorganic NS. synthesis.


Assuntos
Nanoestruturas , Sais , Anaerobiose , Cádmio , Misturas Complexas , Nanoestruturas/química , Ácido Selenioso , Sulfetos , Sulfitos , Enxofre , Telúrio
5.
Bioresour Technol ; 340: 125697, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34358984

RESUMO

The effect of donor substrate and products partitioning on the performance of butyl-ß-galactoside synthesis with Aspergillus oryzae ß-galactosidase was studied. Firstly, the partition coefficient of the donor substrate (lactose) and the reaction products (glucose, galactose and butyl-ß-galactoside) were determined in the aqueous and organic phases of the reaction medium. In the temperature range studied (30 to 50 °C), butyl ß-galactoside was roughly 130 and 30-fold more soluble in the organic phase than lactose and the monosaccharides, respectively. Afterward, the effect of the 1-butanol/ aqueous phase ratio (α) on the reaction was evaluated in the range from 0.25 to 4. Results show that higher values of α reduce the incidence of secondary hydrolysis by favoring the extraction of butyl-ß-galactoside into the organic phase where it is not hydrolyzed, leading to higher yields. Also, major interfacial properties for butyl-ß-galactoside were determined at 25 °C.


Assuntos
Aspergillus oryzae , Galactose , Galactosídeos , Hidrólise , Lactose , beta-Galactosidase
6.
Artigo em Inglês | MEDLINE | ID: mdl-32793582

RESUMO

The enzymatic synthesis of short-tailed alkyl glucosides is generally carried out in an aqueous-organic biphasic reaction medium with a rather low fatty alcohol concentration in the aqueous phase (where the synthesis occurs). Thus, hydrolytic reactions have a significant impact on the synthesis performance. Given this background, the use of acetone as cosolvent was studied for the synthesis of butyl-ß-galactoside with Aspergillus oryzae ß-galactosidase. The liquid-liquid equilibrium of the reaction mixture components (acetone/1-butanol/aqueous solution) was determined and the single- and two-phase regions were defined at 30, 40, and 50°C. It was observed that the liquid-liquid equilibrium of the ternary system acetone/1-butanol/water differs significantly from the one obtained using an aqueous solution (50 mM McIlvaine buffer pH 4.5; 5 g L-1) instead of water. This is mainly because of the salting-out effect of the buffer; nevertheless, the presence of lactose also altered the equilibrium. Having this in mind, the effects of temperature (30 and 50°C) and reaction mixture composition were assessed. Three general conditions were evaluated: single-phase ternary system (30% acetone), two-phase ternary system (10% acetone) and two-phase binary system (0% acetone). Acetone had a deleterious effect on enzyme stability at 50°C, leading to low reaction yields. However, no enzyme deactivation was detected at 30°C. Moreover, a reaction yield of 0.98 mol mol-1 was attained in the 30/50/20% (w/w) mixture of acetone/1-butanol/aqueous solution. This very high yield can be explained by the huge increase in the concentration of 1-butanol and the reduction of water activity. The synthesis was carried out using also the ß-galactosidase immobilized in glyoxal-agarose and amino-glyoxal-agarose, and by aggregation and crosslinking. In the case of agarose-derived catalysts, two average particle diameters were assessed to evaluate the presence of internal mass transfer limitations. Best yield (0.88 mol mol-1) was obtained with glyoxal-agarose derivatives and the particle size had non-effect on yield. The chemical structure of butyl-ß-galactoside was determined by NMR and FT-IR.

7.
BMC Biotechnol ; 20(1): 29, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471409

RESUMO

BACKGROUND: The bacterial genus Exiguobacterium includes several species that inhabit environments with a wide range of temperature, salinity, and pH. This is why the microorganisms from this genus are known generically as polyextremophiles. Several environmental isolates have been explored and characterized for enzyme production as well as for bioremediation purposes. In this line, toxic metal(loid) reduction by these microorganisms represents an approach to decontaminate soluble metal ions via their transformation into less toxic, insoluble derivatives. Microbial-mediated metal(loid) reduction frequently results in the synthesis of nanoscale structures-nanostructures (NS) -. Thus, microorganisms could be used as an ecofriendly way to get NS. RESULTS: We analyzed the tolerance of Exiguobacterium acetylicum MF03, E. aurantiacum MF06, and E. profundum MF08 to Silver (I), gold (III), and tellurium (IV) compounds. Specifically, we explored the ability of cell-free extracts from these bacteria to reduce these toxicants and synthesize NS in vitro, both in the presence or absence of oxygen. All isolates exhibited higher tolerance to these toxicants in anaerobiosis. While in the absence of oxygen they showed high tellurite- and silver-reducing activity at pH 9.0, whereas AuCl4- which was reduced at pH 7.0 in both conditions. Given these results, cell-free extracts were used to synthesize NS containing silver, gold or tellurium, characterizing their size, morphology and chemical composition. Silver and tellurium NS exhibited smaller size under anaerobiosis and their morphology was circular (silver NS), starred (tellurium NS) or amorphous (gold NS). CONCLUSIONS: This nanostructure-synthesizing ability makes these isolates interesting candidates to get NS with biotechnological potential.


Assuntos
Extratos Celulares/química , Exiguobacterium/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Telúrio/química , Aerobiose , Anaerobiose , Antibacterianos/farmacologia , Biodegradação Ambiental , Extratos Celulares/farmacologia , Exiguobacterium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Temperatura
8.
Polymers (Basel) ; 11(4)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010156

RESUMO

In this study, a versatile synthesis of silver nanoparticles of well-defined size by using hydrogels as a template and stabilizer of nanoparticle size is reported. The prepared hydrogels are based on polyvinyl alcohol and maleic acid as crosslinker agents. Three hydrogels with the same nature were synthesized, however, the crosslinking degree was varied. The silver nanoparticles were synthesized into each prepared hydrogel matrix achieving three significant, different-sized nanoparticles that were spherical in shape with a narrow size distribution. It is likely that the polymer network stabilized the nanoparticles. It was determined that the hydrogel network structure can control the size and shape of the nanoparticles. The hydrogel/silver nanohybrids were characterized by swelling degree, Thermal Gravimetric Analysis (TGA), Fourier Transform Infrared (FT-IR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscope (TEM). Antibacterial activity against Staphylococcus aureus was evaluated, confirming antimicrobial action of the encapsulated silver nanoparticles into the hydrogels.

9.
Bioresour Technol ; 277: 211-215, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30639092

RESUMO

The main goal of this work was to evaluate the performance of ß-galactosidase from Exiguobacterium acetylicum MF03 in both hydrolysis and transgalactosylation reactions from different substrates. The enzyme gene was expressed in Escherichia coli BL21 (DE3), sequenced, and subjected to bioinformatic and kinetic assessment. Results showed that the enzyme was able to hydrolyze lactulose and o-nitrophenyl-ß-d-galactopyranoside, but unable to hydrolyze lactose, o-nitrophenyl-ß-d-glucopyranoside, butyl- and pentyl-ß-d-galactosides. This unique and novel substrate specificity converts the E. acetylicum MF03 ß-galactosidase into an ideal catalyst for the formulation of an enzymatic kit for lactulose quantification in thermally processed milk. This is because costly steps to eliminate glucose (resulting from hydrolysis of lactose when a customary ß-galactosidase is used) can be avoided.


Assuntos
Bacillaceae/enzimologia , beta-Galactosidase/metabolismo , Biocatálise , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Temperatura Alta , Hidrólise , Cinética , Especificidade por Substrato , beta-Galactosidase/genética , beta-Galactosidase/isolamento & purificação
10.
Front Microbiol ; 9: 959, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869640

RESUMO

Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loid)s. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro. All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter, and Exiguobacterium genera. Most strains displayed metal(loid)-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite ( TeO32- ) and tetrachloro aurate ( AuCl4- ) reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite ( SeO32- ) and silver (Ag+) reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude extracts showed MICs of 45- and 66- µg/ml for E. coli and L. monocytogenes, respectively. Similar MIC values (40 and 82 µg/ml, respectively) were observed for TeNS generated using crude extracts from gorA-overexpressing E. coli. In turn, AuNS MICs for E. coli and L. monocytogenes were 64- and 68- µg/ml, respectively.

11.
PeerJ ; 6: e4402, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479501

RESUMO

The Psychrobacter genus is a cosmopolitan and diverse group of aerobic, cold-adapted, Gram-negative bacteria exhibiting biotechnological potential for low-temperature applications including bioremediation. Here, we present the draft genome sequence of a bacterium from the Psychrobacter genus isolated from a sediment sample from King George Island, Antarctica (3,490,622 bp; 18 scaffolds; G + C = 42.76%). Using phylogenetic analysis, biochemical properties and scanning electron microscopy the bacterium was identified as Psychrobacter glacincola BNF20, making it the first genome sequence reported for this species. P. glacincola BNF20 showed high tellurite (MIC 2.3 mM) and chromate (MIC 6.0 mM) resistance, respectively. Genome-wide nucleotide identity comparisons revealed that P. glacincola BNF20 is highly similar (>90%) to other uncharacterized Psychrobacter spp. such as JCM18903, JCM18902, and P11F6. Bayesian multi-locus phylogenetic analysis showed that P. glacincola BNF20 belongs to a polyphyletic clade with other bacteria isolated from polar regions. A high number of genes related to metal(loid) resistance were found, including tellurite resistance genetic determinants located in two contigs: Contig LIQB01000002.1 exhibited five ter genes, each showing putative promoter sequences (terACDEZ), whereas contig LIQB1000003.2 showed a variant of the terZ gene. Finally, investigating the presence and taxonomic distribution of ter genes in the NCBI's RefSeq bacterial database (5,398 genomes, as January 2017), revealed that 2,623 (48.59%) genomes showed at least one ter gene. At the family level, most (68.7%) genomes harbored one ter gene and 15.6% exhibited five (including P. glacincola BNF20). Overall, our results highlight the diverse nature (genetic and geographic diversity) of the Psychrobacter genus, provide insights into potential mechanisms of metal resistance, and exemplify the benefits of sampling remote locations for prospecting new molecular determinants.

12.
Front Microbiol ; 9: 3118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619192

RESUMO

Microorganism survival in the presence of toxic substances such as metal(loid)s lies chiefly on their ability to resist (or tolerate) such elements through specific resistance mechanisms. Among them, toxicant reduction has attracted the attention of researchers because metal(loid)-reducing bacteria are being used to recover and/or decontaminate polluted sites. Particularly, our interest is to analyze the toxicity of gold and tellurium compounds for the environmental microorganism Enterobacter cloacae MF01 and also to explore the generation of nanostructures to be used in future biotechnological processes. Resistance of E. cloacae MF01 to gold and tellurium salts as well as the putative mechanisms involved -both in aerobic and anaerobic growth conditions- was evaluated. These metal(loid)s were selected because of their potential application in biotechnology. Resistance to auric tetrachloride acid (HAuCl4) and potassium tellurite (K2TeO3) was assessed by determining areas of growth inhibition, minimum inhibitory concentrations, and growth curves as well as by viability tests. E. cloacae MF01 exhibited higher resistance to HAuCl4 and K2TeO3 under aerobic and anaerobic conditions, respectively. In general, their toxicity is mediated by the generation of reactive oxygen species and by a decrease of intracellular reduced thiols (RSH). To assess if resistance implies toxicant reduction, intra- and extra-cellular toxicant-reducing activities were evaluated. While E. cloacae MF01 exhibited intra- and extra-cellular HAuCl4-reducing activity, tellurite reduction was observed only intracellularly. Then, Au- and Te-containing nanostructures (AuNS and TeNS, respectively) were synthesized using crude extracts from E. cloacae MF01 and their size, morphology, and chemical composition was evaluated.

13.
Nat Commun ; 8: 15320, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492282

RESUMO

The metalloid tellurite is highly toxic to microorganisms. Several mechanisms of action have been proposed, including thiol depletion and generation of hydrogen peroxide and superoxide, but none of them can fully explain its toxicity. Here we use a combination of directed evolution and chemical and biochemical approaches to demonstrate that tellurite inhibits heme biosynthesis, leading to the accumulation of intermediates of this pathway and hydroxyl radical. Unexpectedly, the development of tellurite resistance is accompanied by increased susceptibility to hydrogen peroxide. Furthermore, we show that the heme precursor 5-aminolevulinic acid, which is used as an antimicrobial agent in photodynamic therapy, potentiates tellurite toxicity. Our results define a mechanism of tellurite toxicity and warrant further research on the potential use of the combination of tellurite and 5-aminolevulinic acid in antimicrobial therapy.


Assuntos
Antibacterianos/farmacologia , Vias Biossintéticas , Heme/biossíntese , Metaloides/farmacologia , Telúrio/farmacologia , Ácido Aminolevulínico/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Deficiências de Ferro , Testes de Sensibilidade Microbiana , Modelos Biológicos , Mutação/genética , Protoporfirinas/farmacologia , Superóxidos/metabolismo , Telúrio/toxicidade
14.
Front Microbiol ; 7: 1160, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27507969

RESUMO

The tellurium oxyanion tellurite (TeO3 (2-)) is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(P)H-dependent, reduction to the less toxic form elemental tellurium (Te(0)). To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3), among others, have been shown to display tellurite-reducing activity. This activity is generically referred to as tellurite reductase (TR). Bioinformatic data resting on some of the abovementioned enzymes enabled the identification of common structures involved in tellurite reduction including vicinal catalytic cysteine residues and the FAD/NAD(P)(+)-binding domain, which is characteristic of some flavoproteins. Along this line, thioredoxin reductase (TrxB), alkyl hydroperoxide reductase (AhpF), glutathione reductase (GorA), mercuric reductase (MerA), NADH: flavorubredoxin reductase (NorW), dihydrolipoamide dehydrogenase, and the putative oxidoreductase YkgC from Escherichia coli or environmental bacteria were purified and assessed for TR activity. All of them displayed in vitro TR activity at the expense of NADH or NADPH oxidation. In general, optimal reducing conditions occurred around pH 9-10 and 37°C. Enzymes exhibiting strong TR activity produced Te-containing nanostructures (TeNS). While GorA and AhpF generated TeNS of 75 nm average diameter, E3 and YkgC produced larger structures (>100 nm). Electron-dense structures were observed in cells over-expressing genes encoding TrxB, GorA, and YkgC.

15.
Microbiol Res ; 177: 15-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26211961

RESUMO

The tellurium oxyanion tellurite is harmful for most microorganisms. Since its toxicity occurs chiefly once the toxicant reaches the intracellular compartment, unveiling the toxicant uptake process is crucial for understanding the whole phenomenon of tellurium toxicity. While the PitA phosphate transporter is thought to be one of the main paths responsible for toxicant entry into Escherichia coli, genetic and physiological evidence have identified the ActP acetate carrier as the main tellurite importer in Rhodobacter capsulatus. In this work, new background on the role of these transporters in tellurite uptake by E. coli is presented. It was found that, similar to what occurs in R. capsulatus, ActP is able to mediate toxicant entry to this bacterium. Lower reactive oxygen species levels were observed in E. coli lacking the actP gene. Antioxidant enzyme catalase and fumarase C activity was almost unchanged after short exposure of E. coli ΔactP to sublethal tellurite concentrations, suggesting a low antioxidant response. In this strain, tellurite uptake decreased significantly during the first 5 min of exposure and inductively coupled plasma optical emission spectroscopy assays using an actP-overexpressing strain confirmed that this carrier mediates toxicant uptake. Relative gene expression experiments by qPCR showed that actP expression is enhanced at short times of tellurite exposure, while pitA and pitB genes are induced later. Summarizing, the results show that ActP is involved in tellurite entry to E. coli and that its participation occurs mainly at early stages of toxicant exposure.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Telúrio/metabolismo , Transporte Biológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Perfilação da Expressão Gênica , Transportadores de Ácidos Monocarboxílicos/genética , Reação em Cadeia da Polimerase em Tempo Real , Ativação Transcricional/efeitos dos fármacos
16.
Arch Biochem Biophys ; 566: 67-75, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25447814

RESUMO

Escherichia coli exposed to tellurite shows augmented membrane lipid peroxidation and ROS content. Also, reduced thiols, protein carbonylation, [Fe-S] center dismantling, and accumulation of key metabolites occur in these bacteria. In spite of this, not much is known about tellurite effects on the E. coli electron transport chain (ETC). In this work, tellurite-mediated damage to the E. coli ETC's NADH dehydrogenases and terminal oxidases was assessed. Mutant lacking ETC components showed delayed growth, decreased oxygen consumption and increased ROS in the presence of the toxicant. Membranes from tellurite-exposed E. coli exhibited decreased oxygen consumption and dNADH/NADH dehydrogenase activity, showing an impairment of NDH-I but not of NDH-II activity. Regarding terminal oxidases, only the bo oxidase complex was affected by tellurite. When assaying NDH-I and NDH-II activity in the presence of superoxide, the NDH-I complex was preferentially damaged. The activity was partly restored in the presence of reducing agents, sulfide and Fe(2+) under anaerobic conditions, suggesting that damage affects NDH-I [4Fe-4S] centers. Finally, augmented membrane protein oxidation along with reduced oxidase activity was observed in the presence of the toxicant. Also, the increased expression of genes encoding alternative terminal oxidases probably reflects a cell's change towards anaerobic respiration when facing tellurite.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , NADH Desidrogenase/metabolismo , Oxirredutases/metabolismo , Telúrio/toxicidade , Aerobiose/efeitos dos fármacos , Anaerobiose/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Isoenzimas/genética , Isoenzimas/metabolismo , NADH Desidrogenase/genética , Oxirredução/efeitos dos fármacos , Oxirredutases/genética , Consumo de Oxigênio/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Superóxidos/metabolismo
17.
Appl Environ Microbiol ; 80(22): 7061-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25193000

RESUMO

Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Glutationa Redutase/metabolismo , Nanoestruturas/análise , Pseudomonas/enzimologia , Telúrio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biotransformação , Estabilidade Enzimática , Glutationa Redutase/química , Glutationa Redutase/genética , Oxirredução , Pseudomonas/química , Pseudomonas/genética , Pseudomonas/metabolismo
18.
Res Microbiol ; 165(7): 566-70, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25049169

RESUMO

Tellurite (TeO3(2-)) is harmful for most microorganisms, especially Gram-negative bacteria. Even though tellurite toxicity involves a number of individual aspects, including oxidative stress, malfunctioning of metabolic enzymes and a drop in the reduced thiol pool, among others, the general mechanism of toxicity is rather complex and not completely understood to date. This work focused on DNA microarray analysis to evaluate the Escherichia coli global transcriptomic response when exposed to the toxicant. Confirming previous results, the induction of the oxidative stress response regulator soxS was observed. Upregulation of a number of genes involved in the global stress response, protein folding, redox processes and cell wall organization was also detected. In addition, downregulation of aerobic respiration-related genes suggested a metabolic switch to anaerobic respiration. The expression results were validated through oxygen consumption experiments, which corroborated that tellurite-exposed cells effectively consume oxygen at lower rates than untreated controls.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Telúrio/toxicidade , Anaerobiose , Escherichia coli/genética , Análise em Microsséries , Oxigênio/metabolismo
19.
Biometals ; 27(2): 237-46, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24481550

RESUMO

Tellurite, the most soluble tellurium oxyanion, is extremely harmful for most microorganisms. Part of this toxicity is due to the generation of reactive oxygen species that in turn cause oxidative stress. However, the way in which tellurite interferes with cellular processes is not well understood to date. Looking for new cellular tellurite targets, we decided to evaluate the functioning of the electron transport chain in tellurite-exposed cells. In this communication we show that the E. coli ndh gene, encoding NDH-II dehydrogenase, is significantly induced in toxicant-exposed cells and that the enzyme displays tellurite-reducing activity that results in increased superoxide levels in vitro.


Assuntos
Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Oxirredutases/metabolismo , Superóxidos/metabolismo , Telúrio/metabolismo , Telúrio/farmacologia , Membrana Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Oxirredução , Oxirredutases/genética
20.
Rev. Fac. Nac. Salud Pública ; 29(4): 380-391, dic. 2011.
Artigo em Espanhol | LILACS | ID: lil-651155

RESUMO

Objetivo: realizar un análisis acerca de las condiciones básicas requeridas para la evaluación de factores de riesgo psicosocial intralaboral en contextos organizados. Metodología: se retoman los referentes conceptuales principales que has utilizado para identificar las causas de estrés en el trabajo, haciendo énfasis en el modelo Demanda -Control y el modelo Desequilibrio - Esfuerzo - Recompensa. Resultados: se presenta algunas metodologías e intrumentos que han mostrado una alta confiabilidad para la identificación de factores psicosociales en diversos contextos organizacionales de diferentes países del mundo. Se destaca el caso colombiano donde, a pesar de contar con pocos intrumentos validadeos, hay un avance significativo frente a la tématica a partir de la resolución 2646 de 2008 y la evaluacuión de Factores de Riesgo Psicosocial por parte del Ministerio de Protección Social.


Objective: This review´s aim is to analyze the basic conditions required for the assessment of occupational psychosocial risk factors within organizational contexts. Methodology: the review incorporates the main concepts that have been used to identify the causes of occupational stress, emphasizing the Demand - Control and the Effort - Reward - Imbalance models. Results: the authors show some methodologies and instruments that have exhibited high reliability for identifying psychosocial factors in different organizational contexts in different conuntries. Likewise, they highlight the case of Colombia; a country which, despite having few validated intruments, shows significat advancet in this regard after the birth of resolution 2646 of 2008 and the constrution of the battery of instruments for the assessment of Psychosocial Risk Factors by the Ministry of the Social Protetion in 2010.


Assuntos
Esgotamento Profissional , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...